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For Pearson’s model of Bénard-Marangoni convection, the Nusselt number Nu is proven to be bounded as
a function Marangoni number Ma according to Nu�0.838�Ma2/7 for infinite Prandtl number and according
to Nu�Ma1/2 uniformly for finite Prandtl number. The analysis is also used to raise the lower bound for the
critical Marangoni number for energy stability of the conduction solution from 56.77 to 58.36 when the Prandtl
number is infinite.
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Rayleigh-Bénard convection, the buoyancy-driven flow in
a layer of fluid heated from below and cooled from above, is
a paradigm for complex nonlinear dynamics, pattern forma-
tion, and turbulent transport. Heat transport properties of
convective flow are of primary interest in many applications
and the dependence of the enhanced effective thermal con-
ductivity �the Nusselt number Nu� on the basic system pa-
rameters has been the subject of much theoretical, math-
ematical, computational, and experimental research �1–5�.
The dynamics and heat transport properties of surface-
tension-driven Bénard-Marangoni convection has been stud-
ied much less despite its importance for many applications
�6–8�. In this Brief Report, we derive heat transport bounds
for Pearson’s �6� model of Bénard-Marangoni convection.
This model has recently been the subject of high-Marangoni
direct numerical simulations �9,10� and this work provides a
rigorous theoretical analysis of its fully nonlinear transport
properties. The “background method” �2,11� is adapted to
derive an upper bound on the Nusselt number as a function
of the Marangoni number Ma and, as a side product, improve
the energy stability bound for the conduction state in the
infinite Prandtl number case. Here we present an application
of the background method to a stress-driven flow �12� with
boundary-condition coupling of the dynamical fields.

The basic model is

Pr−1� �u

�t
+ u · �u� = − �p + �u , �1�

� · u = 0, �2�
�T

�t
+ u · �T = �T , �3�

where u�x , t�= iu�x , t�+kw�x , t� is the velocity vector field,
p�x , t� is the pressure field, and T�x , t� is the temperature
field in a fluid layer of unit depth in the z direction �0�z
�1�. The bottom of the layer has no-slip, isothermal bound-
ary conditions,

u�z=0 = 0 = w�z=0, T�z=0 = 0, �4�

and the temperature and flow fields are coupled through the
boundary conditions on the nondeformable, fixed-flux top
surface

w�z=1 = 0, � �T

�z
�

z=1
= − 1, �5�

	 �u

�z
+ Ma

�T

�x



z=1
= 0. �6�

All dynamical variables are periodic in the horizontal �x�
direction. The length unit is the layer thickness h, the time
unit is h2 /�, and the temperature unit is qh /�, where � is
the fluid’s thermal diffusion coefficient, � is its heat conduc-
tivity, and q is the imposed heat flux through the layer. The
Prandtl number is Pr=� /�, where � is the fluid’s viscosity,
and the Marangoni number is Ma=	qh2 /�
��, where 	
is the �negative of the� derivative of the surface tension with
respect to temperature and 
 is the fluid density. The problem
and results are described in two spatial dimensions but may
be generalized to three dimensions by including a jv�x , t�
y-velocity component satisfying v �z=0=0 and ��v /�z
+Ma �T /�y�z=1=0.

The heat flux is prescribed so enhancement of heat
transport due to convection is indicated by a reduction of
the temperature drop across the layer. Thus the Nusselt

number is defined as Nu=−1 / T̄ �z=1, where T̄ �z=1 is the hori-
zontally and time-averaged temperature at the top surface

�−1� T̄ �z=1�0�.
In 1958, Pearson showed that the steady conduction solu-

tion, u=0 and T=−z, is linearly unstable when the Ma-
rangoni number exceeds 79.61 �6�. In 1969, Davis showed
that it is nonlinearly asymptotically stable for Marangoni
numbers below 56.77 �7�.

In the infinite Prandtl number case, the momentum Eq. �1�
reduces to �p=�u so the incompressibility condition �2�
implies that �p=0 and each component of u is biharmonic.
In particular, �2w=0, so at each instant of time the Fourier
transform in the x direction of the vertical component of the
velocity ŵk�z , t� satisfies*doering@umich.edu
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d4ŵk

dz4 − 2k2d2ŵk

dz2 + k4ŵk = 0, �7�

with boundary conditions

ŵk�z=0 = 0,
dŵk

dz
�z=0 = 0, ŵk�z=1 = 0 �8�

and

d2ŵk

dz2 �z=1 = − k2 Ma T̂k�1,t� . �9�

This means that the vertical velocity is a linear �albeit non-
local� functional of the temperature. The exact solution to

Eqs. �7�–�9� is ŵk�z , t�=−Ma T̂k�1, t�fk�z�, where

fk�z� =
k sinh k

2�sinh k cosh k − k�
�kz cosh�kz� − sinh�kz�

+ �1 − k coth�k��z sinh�kz�� . �10�

For large k, these non-negative functions are concentrated
near z=1 while for small k, they are spread across the inter-
val �see Fig. 1�. The modes fk�z�→0 pointwise for z
� �0,1� in both the k→� and k→0 limits.

The background method analysis begins by writing T
=�z�+��x , t�, where �0�=0 and ��1�=−1. The profile
function �z� is the “background” and the remainder ��x , t� is
the “fluctuation” satisfying

��

�t
+ w��z� + u · �� = �� + ��z� , �11�

with boundary conditions � �z=0=0= ��� /�z� �z=1. Multiplying
Eq. �11� by � and integrating over space,

1

2

d

dt
 dx dz�2 = − dx dz�����2 + ��w − ��� . �12�

To study the nonlinear energy stability of the conduction
solution, choose �z�=−z. Evidently, the conduction solution
is absolutely stable when the quadratic form Q���=������2

−w��dxdz is positive definite; Q����0 implies that
��2dxdz→0 monotonically and exponentially as t→�. In
terms of the Fourier coefficients,

Q��� = �
k


0

1 	� d�̂k

dz
�2

+ k2��̂k�2 − Re��̂kŵk
��
dz . �13�

The term with k=0 is manifestly non-negative so only k

�0, in which case T̂k�1�= �̂k�1, t�, need be considered. Then

�
0

1

�̂kŵk
�dz� � Ma��̂k�1��

0

1

��̂k�z��fk�z�dz

� Ma��̂k�1����̂k��fk� � Ma�d�̂k

dz
���̂k��fk�

�
Ma�fk�

2�k�
��d�̂k

dz
�2

+ k2��̂k�2� , �14�

where � · � refers to the L2 norm on �0,1�. In the above, the
fundamental theorem of calculus and Cauchy-Schwarz in-
equality were utilized to show

��̂k�1�� = �
0

1 d�̂k

dz
dz� � �d�̂k

dz
� �15�

and the fact that ab� �a2+b2� /2 was used to separate the
terms. If Ma�fk� /2�k��1 for each k�0, then Q will be a
positive form. A sufficient condition for energy stability is
thus

Ma � sup
k

2�k�

�
0

1

fk�z�2dz�1/2 �16�

and numerical evaluation shows that the critical value is at
least 58.36. That is, Nu=1 for Ma�58.36.

Sustained convection is not impossible for higher values
of the Marangoni number. The Nusselt number is defined by

Nu=−1 / T̄ �z=1 but it may be expressed alternatively by mul-
tiplying the temperature evolution Eq. �3� by T and averag-
ing over space and time to find

1

Nu
= ���T�2� , �17�

where � · � denotes the space and time average. After averag-
ing and an integration by parts, the fluctuation field’s “en-
ergy” evolution equation �12� yields

0 = �����2 + ��w + � � �/�z� + �̄�z=1. �18�

Combined with the identities

T̄�z=1 = �1� + �̄�z=1 �19�

and

���T�2� = �����2 + 2� � �/�z + ���2� , �20�

this implies
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FIG. 1. Functions fk�z� for k=1,10,100.
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1

Nu
= �����2 + 2�w�� − 2�1� − 

0

1

��z�2dz . �21�

Thus, if the background profile �z� satisfying the boundary
conditions can be chosen so that the quadratic functional
Q���=�dx�dz�����2+2�w�� is non-negative, then the Nus-
selt number is bounded above according to

1

Nu
� − 2�1� − 

0

1

��z�2dz . �22�

The background profile may indeed be chosen appropri-
ately. Fix the derivative of the background profile with
��z�=−1 in layers of width �1 near the bottom boundary and
�2 near the top boundary and �z�=constant in between as
illustrated in Fig. 2. Explicitly,

�z� = − z for 0 � z � �1

= − �1 for �1 � z � 1 − �2

= − �1 − z + 1 − �2 for 1 − �2 � z � 1. �23�

Then Nu�1 / ��1+�2� as long as Q��� is positive for all �
satisfying the boundary conditions. In terms of the Fourier
coefficients, this condition is that for each k,


0

1 	� d�̂k

dz
�2

+ k2��̂k�2
dz + 2
0

�1

Re��̂kŵk
��dz

+ 2
1−�2

1

Re��̂kŵk
��dz � 0. �24�

The analysis at the lower boundary proceeds as follows:

�
0

�1

�̂kŵk
�dz��Ma��̂k�1��

0

�1

fk�z��
0

z

�̂k��z̃�dz̃�dz ,

�Ma��̂k�1��
0

�1

fk�z��z��̂k��dz ,

�Ma�d�̂k

dz
�2

0

�1 �z�fk�z��dz , �25�

where the fundamental theorem of calculus and Cauchy-
Schwarz inequalities were used to bound ��̂k�z�� and ��̂k�1��
by �z��̂k�� and �1��̂k��, respectively.

Let F�z�=supk f�z�. Each fk�z2 as z→0 so there is rea-
son to believe that F might have the same behavior. In fact it
does: F�z��cz2 for all z� �0,1� and the prefactor c
�0.943 is easily computed numerically. The upper boundary
layer �2 may then be taken arbitrarily small, i.e., �2�0, so
there is no contribution from the upper boundary. Thus when
�1= �4c Ma /7�−2/7, the quadratic form is non-negative and
Nu�0.838 Ma2/7.

Boeck and Thess �9� computed numerical solutions to the
infinite Prandtl number problem over nearly 2 orders of mag-
nitude in Ma, observing Nu�0.446 Ma0.238 with a scaling
exponent slightly less than 2 /7�0.2857. Their data are plot-
ted with the bounds in Fig. 3.

Now consider the problem with finite Prandtl number.
Employing the background decomposition, expression �21�
for the Nusselt number still holds but in order to control w
and incorporate the Marangoni condition it is necessary to
utilize the full momentum equation. The space and time av-
erage of the dot product of Eq. �1� with u is, after integration
by parts using the boundary condition,

0 = ���u�2� + Ma�u
��

�x
��z=1 �26�

=���u�2 + Ma
�

�z
�u

��

�x
�� . �27�

Combining this with Eq. �21�, we find

�1 0
0

1

�(z)

z

1� �
2

�
1

FIG. 2. Background profile �z� for Marangoni convection. The
diagonal line is the conduction temperature profile.
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FIG. 3. Nusselt vs Marangoni number. Numerical data �9� are
plotted together with the rigorous upper bounds.
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1

Nu
= − 2̄�1� − ��2� + �����2 + 2�w��

+ C Ma−2���u�2 + Ma
�

�z
�u

��

�x
�� , �28�

where C is an arbitrary constant chosen to be C=1.

The relevant quadratic form Q̃�� ,u� is then

Q̃��,u� = ����2 + 2 �w�dxdz +
1

Ma2 ��u�2

+
1

Ma
 �

�z
�u

��

�x
�dxdz , �29�

where from here on � · � denotes the L2 norm on the two-
dimensional domain. Again, the goal is to produce a back-

ground profile satisfying the boundary conditions and Q̃

�0 that minimizes −2̄�1�− ��2�. Toward that end, choose
�z� as in Eq. �23� so that the indefinite term ��w� reduces
to the integral of the product of w and � over regions of
width �1 and �2 near the boundaries.

For the bottom layer, the fundamental theorem of calculus
and Cauchy-Schwarz inequality imply

� dx
0

�1

dz��w� �
�1

2

2
���

�z
���w

�z
� �

1

4
���

�z
�2

+
�1

4

4
��w

�z
�2

.

�30�

The upper layer analysis is different because � is not zero on
the upper boundary

� dx
1−�2

1

dz��w�
� dx

1−�2

1

dz����
1−z

1 �w

�z
dz��

� dx	
0

1 � �w

�z�
�2

dz�
1/2
1−�2

1

dz����1 − z

�
�2

�2
��w

�z
���� �

�2

�2�
��w

�z
����

�z
�

�
�2

2�2�
���w

�z
�2

+ ���

�z
�2� , �31�

where Poincaré’s inequality, i.e., the fact that �0
1f�z�2dz

��−2�0
1f��z�2dz when f�0�=0= f�1�, is used to bound ��� in

terms of � ��
�z �. The term from the boundary condition involv-

ing the Marangoni number must also be controlled by the L2

norms of derivatives of u and �,

 �

�z
�u

��

�x
�dxdz

= � �u

�z

��

�x
−

�u

�x

��

�z
�

� ���u

�z
����

�x
� + ��u

�x
����

�z
��

�
1

2Ma
���u

�z
�2

+ ��u

�x
�2� +

Ma

2
����

�x
�2

+ ���

�z
�2� . �32�

Inserting Eqs. �30�–�32� into Eq. �29�,

Q̃ �
1

2
���

�x
�2

−
�1

4

2
��w

�z
�2

−
�2

2�2�
���w

�z
�2

+ ���

�z
�2�

+ Ma−2�1

2
��u

�x
�2

+
1

2
��u

�z
�2

+ ��w

�x
�2

+ ��w

�z
�2� . �33�

The upper boundary layer thickness �2 may again be taken

arbitrarily small without effecting the scaling. Therefore Q̃

is non-negative when �1�21/4 Ma−1/2 which implies that
Nu�Ma1/2.

The Ma1/2 bound is considerably looser than the infinite
Prandtl number bound �Ma2/7, although direct numerical
simulations by Boeck and Thess �8,10� indicate that the heat
transport scaling is not actually so much higher for the finite
Prandtl number case. Not unexpectedly, the reason that the
arbitrary-Pr bound is so much weaker is that the analysis is
unable to take advantage of the strong relationship between
the temperature and vertical velocity that is manifest in the
infinite Prandtl number model. The situation is the same for
analysis of Rayleigh-Bénard convection �2,3�.

We thank T. Boeck, C.-C. Caulfield, R. R. Kerswell, W.
Tang, and A. Thess for helpful discussions. This research
was supported in part by NSF Award Nos. PHY-0555324
and PHY-0855335. Some of this work was performed at the
GFD Program at Woods Hole Oceanographic Institution,
supported by NSF and ONR, and some at the NSF’s Institute
for Mathematics and Its Applications at the University of
Minnesota.

�1� L. N. Howard, J. Fluid Mech. 17, 405 �1963�.
�2� C. R. Doering and P. Constantin, Phys. Rev. E 53, 5957

�1996�.
�3� C. R. Doering, F. Otto, and M. G. Reznikoff, J. Fluid Mech.

560, 229 �2006�.
�4� H. Johnston and C. R. Doering, Phys. Rev. Lett. 102, 064501

�2009�.
�5� G. Ahlers, D. Lohse, and S. Grossmann, Rev. Mod. Phys. 81,

503 �2009�.

�6� J. R. A. Pearson, J. Fluid Mech. 4, 489 �1958�.
�7� S. H. Davis, J. Fluid Mech. 39, 347 �1969�.
�8� T. Boeck and A. Thess, Phys. Rev. Lett. 80, 1216 �1998�.
�9� T. Boeck and A. Thess, Phys. Rev. E 64, 027303 �2001�.

�10� T. Boeck, Adv. Space Res. 36, 4 �2005�.
�11� C. R. Doering and P. Constantin, Phys. Rev. Lett. 69, 1648

�1992�.
�12� W. Tang, C. Caulfield, and W. R. Young, J. Fluid Mech. 510,

333 �2004�.

BRIEF REPORTS PHYSICAL REVIEW E 81, 047301 �2010�

047301-4

http://dx.doi.org/10.1017/S0022112063001427
http://dx.doi.org/10.1103/PhysRevE.53.5957
http://dx.doi.org/10.1103/PhysRevE.53.5957
http://dx.doi.org/10.1017/S0022112006000097
http://dx.doi.org/10.1017/S0022112006000097
http://dx.doi.org/10.1103/PhysRevLett.102.064501
http://dx.doi.org/10.1103/PhysRevLett.102.064501
http://dx.doi.org/10.1103/RevModPhys.81.503
http://dx.doi.org/10.1103/RevModPhys.81.503
http://dx.doi.org/10.1017/S0022112058000616
http://dx.doi.org/10.1017/S0022112069002217
http://dx.doi.org/10.1103/PhysRevLett.80.1216
http://dx.doi.org/10.1103/PhysRevE.64.027303
http://dx.doi.org/10.1016/j.asr.2005.02.083
http://dx.doi.org/10.1103/PhysRevLett.69.1648
http://dx.doi.org/10.1103/PhysRevLett.69.1648
http://dx.doi.org/10.1017/S0022112004009589
http://dx.doi.org/10.1017/S0022112004009589

